
Cooperative Pruning in Cross-Domain Deep Neural Network Compression

Shangyu Chen , Wenya Wang and Sinno Jialin Pan
Nanyang Technological University, Singapore

schen025@e.ntu.edu.sg, wangwy@ntu.edu.sg, sinnopan@ntu.edu.sg

Abstract
The advancement of deep models poses great chal-
lenges to real-world deployment because of the
limited computational ability and storage space on
edge devices. To solve this problem, existing works
have made progress to compress deep models by
pruning or quantization. However, most existing
methods rely on a large amount of training data and
a pre-trained model in the same domain. When
only limited in-domain training data is available,
these methods fail to perform well. This prompts
the idea of transferring knowledge from a resource-
rich source domain to a target domain with lim-
ited data to perform model compression. In this
paper, we propose a method to perform cross-
domain pruning by cooperatively training in both
domains: taking advantage of data and a pre-trained
model from the source domain to assist pruning
in the target domain. Specifically, source and tar-
get pruned models are trained simultaneously and
interactively, with source information transferred
through the construction of a cooperative pruning
mask. Our method significantly improves prun-
ing quality in the target domain, and shed light to
model compression in the cross-domain setting.

1 Introduction
Deep neural networks have been extensively employed with
state-of-the-art results in various applications especially in
computer vision [Krizhevsky et al., 2012; Simonyan and Zis-
serman, 2014; He et al., 2016]. Despite the promising perfor-
mance, deep models come with a huge number of parameters
which are both computational- and storage- demanding. Even
for inference only with a well-trained model, the forward
computation mainly involves multiplications of a real-valued
weight by a real-valued activation, which are expensive be-
cause of float-point to float-point multiplication operations.
To alleviate this problem, a number of approaches have been
proposed to compress deep models by pruning: deleting the
unimportant multiplications to sparsify the deep model. For
example, Han et al.[2015] proposed to prune weights accord-
ing to the magnitude of their absolute value. Guo et al.[2016]
dynamically compressed the model by pruning weights with

some probability while keeping all the weights updated dur-
ing training for future recovery.

However, most prevailing pruning methods relied on train-
ing processes with a large amount of data and a well-trained
model. Specifically, given a well pre-trained deep neural net-
work as the initial parameters, which is usually trained in a
cloud environment, most methods conduct the pruning pro-
cess in a supervised learning manner with sufficient training
data to minimize the error between the outputs of the pruned
network and the ground-truth labels. However, practical sce-
narios pose more strict challenges: a large amount of labeled
data is hard to obtain due to costly annotation effort, making
it hard to train a good model, not even to mention pruning.
Without the access of sufficient data and well-trained full-
precision model, existing pruning methods are no more ef-
fective. In these situations, a desirable solution is to transfer
knowledge from a well pre-trained model in a resource-rich
source domain to the target domain with limited data for prun-
ing. To this end, we develop a novel pruning method under
the cross-domain setting: given a pre-trained model and data
from the source domain and only limited data in the target do-
main, the model could utilize knowledge from the source do-
main to assist pruning in the target domain. Although transfer
learning has been applied in many learning problems, there is
little study on cross-domain model compression. In the se-
quel, we name our proposed model as Copertivative Pruning
(Co-Prune).

Specifically, we employ a dynamic and cooperative prun-
ing strategy to prune both source and target network simulta-
neously. We employ a mask matrix consisting of ‘0’s and ‘1’s
with the same shape as each layer’s parameters to indicate if
the parameter at each position should be pruned {0} or kept
{1}. The entries in the mask are determined by the absolute
values of their corresponding parameters in the full-precision
model. In each iteration, parameters are updated by gradient
descent: for the parameters pruned by the mask, their gradi-
ents are still recorded according to the gradients before pen-
etrating through the mask. The updated parameters lead to a
modified mask, which in turn affects the computation in the
next iteration. To transfer knowledge, the mask of the target
network for each layer is jointly determined by its own pa-
rameters and the ones from the source network via a weighted
scalar parameter α, named as “transfer factor”. Transfer fac-
tor α determines how much knowledge is leveraged from the

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2102

source domain to the target domain. We dynamically set α
in the training process to reflect dynamic knowledge trans-
fer. Specifically, α is set larger at the beginning of training
because target domain is assumed to rely heavily on source
supervision to achieve a good initial state. As training pro-
ceeds, we gradually decrease α to allow the target network to
learn from itself. We show in the experiment that the dynamic
transfer factor could achieve a smooth knowledge transfer for
better prediction performance.

Compared with most existing methods, Co-Prune is capa-
ble of conducting model pruning in the domain with only
limited training data and without a well-trained initial state.
Our contributions are listed in the following: 1) Our method
can deal with neural network pruning under the scenario of
limited training data. 2) We pioneer the idea of knowledge
transfer from a resource-rich domain to conduct neural net-
work pruning in target domains. 3) Extensive experiments
are conducted to verify the effectiveness of our proposed
method compared with several state-of-the-art approaches in
the setting of limited training data. Codes are available at
https://github.com/csyhhu/Co-Prune.

2 Related Work
Element-Wise Pruning. Neural networks pruning has
been studied since last century. LeCun et al.[1990] proposed
to study training loss difference after pruning one parameter
as a criterion to measure its importance. This difference is
approximated as the multiplication of some power of the
weight’s magnitude and its Hessian. Hassibi and Stork[1993]
modified this measurement by incorporating the updates of
the other weights to compensate for pruning. Entering the
era of deep learning, Han et al.[2015] proposed to measure
the importance of a parameter by its absolute value in a
well-trained model. Dong et al.[2017] adapted [Hassibi
and Stork, 1993]’s criterion in deep neural networks in a
layer-wise setting by simplfying calculation of the Hessian
and proved a theoretical bound for pruning error propagation.
The aforementioned methods calculate the importance for
each parameter based on a pre-trained model, and conduct
pruning by deleting less important parameters while keeping
the others. On the contrary, Guo et al.[2016] performed
pruning in a training style: during the training of neural
networks, it consistently pruning parameters according to its
absolute value.

Domain Adaptation. Domain adaptation [Pan and Yang,
2010] aims at training a model for a target domain where
labeled data is unavailable or scarce, with the assistance of
a source domain with abundant data. Tzeng et al.[2014] ex-
tended the idea of transfer component analysis (TCA) [Pan et
al., 2011] in the context of deep neural networks. Following
the similar idea of reducing discrepancy of source and target
features, Ganin and Lempitsky[2014] and Tzeng et al.[2017]
introduced a discriminator to distinguish both domains, while
training both models to cheat the discriminator. However,
most domain adaptation methods focused on performance
improvement in full-precision models for target domain,
without considering knowledge transfer to assist model

compression.

Knowledge Distillation. Distillation is commonly used in
knowledge transfer, where information from a large model
(denoted as “teacher”) is delivered to a small and compact
model (“student”) [Bucilua et al., 2006]. Hinton et al.[2015]
formulated this process by minimizing the difference be-
tween outputs of these two networks given the same inputs.
Romero et al.[2014] proposed to improve knowledge transfer
by matching the features in middle layers. Gupta et al.[2016]
studied knowledge transfer between two models: RGB im-
ages to paired depth image, by teaching the network to repro-
duce the mid-level semantic representations. However, most
distillation methods aim at transferring knowledge to a com-
pact or shallow models, which may lack ability to store all the
information. Pruning focuses on finding the redundant con-
nections in large models and provide regularization, which is
used in Co-Prune to provide better knowledge transfer.

3 Cooperative Pruning
Given a pre-trained neural network model in terms of Ws,
a training dataset Ds with ns data from the source domain,
and a limited training dataset Dt with nt data from the target
domain, we aim to produce a pruned model W′

t = WtMt

for the target domain, where Wt denotes the target-domain
full-precision network, which is unknown at the beginning,
W′

t parameterizes the target-domain network after pruning,
and Mt is the mask matrix. Normally, the target dataset is
less than 1/10 of the source dataset which is insufficient to
train a good deep neural network model. For each layer of a
model, a mask matrix (M) of the same shape as model param-
eters is introduced to indicate whether a parameter is pruned
or not (denoted by 0 or 1). We preserve two networks and
their mask matrices for the source domain (Ws, Ms) and the
target domain (Wt, Mt), respectively. Wt is initialized from
the fine-tuned model in the target domain trained from Ws.
The marks Ms and Mt are initialized with all 1’s. During
training, both Ws and Wt are updated through gradient de-
scent, while Ms and Mt are directly computed accordingly.
We update Ws during training to dynamically affect Mt. A
Compression Ratio (CR) is set for each layer to control the
percentage of remaining parameters after pruning.

Fig.1 illustrates a sketch architecture for Co-Prune: Prun-
ing is conducted by imposing layer-wise pruning mask for
model’s parameters Ws (Wt). During training, the mask Ms

(Mt) is updated in each iteration according to current value of
parameters, which is explained in detail in Sec.3.1. Pruning
mask Ms for the source domain is independently generated
from its own parameters, as in (3). For the target domain,
the pruning mask Mt is obtained from the parameters of both
source and target networks via (5), where knowledge from the
source domain is selectively transferred to the target domain.

3.1 Mask Generation
It is rather difficult to train a target model from scratch using
only limited target data. On the other hand, directly apply-
ing and fine-tuning the pre-trained model from a source do-
main for target predictions is not feasible due to large domain

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2103

Figure 1: Sketch architecture for Co-Prune: source / target task is
trained and pruned cooperatively. Red dash lines indicate where the
contribution to masks comes from. Blue dash lines point out where
the masks are imposed to. Pruning mask of source task is determined
by its own parameters. By contrast, both parameters from source and
target model contribute to pruning mask for target

shift. Therefore, we propose to leverage information from the
source model to assist target predictions through cooperative
mask generation. We regard the mask as the bridge connect-
ing source/target domain and transferring knowledge between
them. Specially, given parameters W, masking function (M)
and its leading mask M is defined as:

Mi,j = M(Wi,j)

=

{
0, if Imp(Wi,j) < σImp(CR),
1, if Imp(Wi,j) ≥ σImp(CR),

(1)

where Imp(·) is a function measuring parameters’ impor-
tance. For example, [LeCun et al., 1990] defined it as:
Imp(w) = ∂2L

∂w2×w2, involving hessian of each parameter and
its square. In Co-Prune, to efficiently calculate parameters’
importance, it is defined as: Imp(Wi,j) = |Wi,j |. σImp(CR)
represents a mapping from parameters (with n elements) to
pruning threshold given Imp(·) and CR set for this layer:

σImp(CR) = Increasing(Imp(W), n× CR). (2)

Increasing(W, i) takes out the i-th element of an increasing
ranking of elements from Imp(W).

The mask for each layer of source parameters Ws is gen-
erated using (1) independently:

Ms =M(Ws). (3)

The mask matrix embeds information about parameters’
importance in each domain. We assign a scalar variable α,
named as “transfer factor” to control the knowledge flow by
a fusion function f(Ws,Wt, α) for generating the mask in
the target domain. In Co-Prune, transfer factor produces a
weighted sum of both source and target model parameters as
the following:

W̃ = f(Ws,Wt, α) = α×Ws + (1− α)×Wt. (4)

Then W̃ is utilized to compute the mask matrix for target
model using (1) as

Mt =M(W̃). (5)

The pruned positions in Mt are set as 0, while the rest are set
as 1. During this process, knowledge from the source model
is transferred to the target, regulated through α. The mask
is imposed into each layer of the network for inference and
calculation of loss, which is denoted by:

Loss(Wd �Md), (6)

with d ∈ {s, t}, where� represents element-wise multiplica-
tion between Wd and Md.

Figure 2: Adjust α during cooperative pruning. Given updated pa-
rameters from the source model Ws and the target model Wt, trans-
fer factor α in fusing function f is imposed to generated a combined
W̃ for target mask

3.2 Adaptive Domain Adaptation via Transfer
Factor α

Cooperative pruning can be regarded as source model
(teacher) transferring knowledge to target model (student).
Because of limited data in the target domain, learning at the
beginning requires more guidance from the source domain
by exploring the commonalities across different domains. As
training proceeds, it is assumed that the target model is ca-
pable of learning more domain-dependent information from
itself. This dynamic mechanism is implemented by adjust-
ing α: assigning a large α at the beginning, and reducing it
gradually along with the training process. Specially, in Co-
Prune a non-increasing discrete function for αk w.r.t iteration
of training optimum k is defined:

αk = α0 − k ×
α0 − αmin

β
, s.t. αmin ≤ αk ≤ α0. (7)

α0 is the initial factor, αmin is the minimal value that αk can
reach. When training comes at optimum using current αk, it
will be updated by (7) to obtain αk+1. β represents sensitivity
of {αk}. In Co-Prune, α0 = 0.7, αmin = 0.3, β = 3 for trade-
off between computational time and accuracy. Further studies
on how to choose α0, αmin and β are experimented in Sec4.2.

As shown in Fig. 2 for an example of adaptive α: parame-
ters from source and target are weighted summed by a grad-
ually changing α, leading to combined parameters with the
importance of each domain weighed by α.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2104

3.3 Training-based Pruning
Traditional pruning is conducted in a “Prune-Retrain” fash-
ion: Firstly, prune less important paramters based on the pre-
trained model by corresponding Imp(·), then retrain the re-
maining parameters while fixing the pruned ones. Such one-
time pruning strategy fails to retrieve pruned parameters that
appear to be essential in a latter training stage. This could
be the case in cross-domain pruning: some weights need to
be retrieved in the source model to be adapted to the target
model. Compared to direct pruning, imposing a mask matrix
over parameters to perform pruning is a better way to keep
original parameters.

However, when conducting backward update, the gradients
of those parameters with 0 mask values are 0, making it sim-
ilar to one-time pruning. To overcome this limitation and en-
able model adaptation during cross-domain training, we bor-
row the idea of “straight-through estimator” (STE) from neu-
ral network quantization: For non-differentiable quantization
functionQ imposed on value r to obtain q = Q(r), the gradi-
ent of loss w.r.t q is attained as ∂C

∂q = gq . The straight-through
estimator of ∂C

∂r = gr is simply: gr = gq1|r|≤1.
Specially, during inference, consider that pruning func-

tion is conducted on W, leading to Ŵ = M � W =
M(W) �W. where we omit subscripts {s, t} for the ease
of illustration. During inference, loss of neural network is:

Forward : L = Loss(Ŵ). (8)

For backward computation, assume that gradient ofLw.r.t Ŵ
is attained as gŴ = ∂L

∂Ŵ
. In Co-Prune, estimator of gW =

∂L
∂W is obtained by

Backward : gW = gŴ. (9)
During training-based pruning, each layer consists of a Com-
pression Ratio (CR) that is set heuristically, representing the
proportion of the remaining parameters. After parameter up-
dates using (9) in each iteration, Parameters below the thresh-
old attained by (2) are pruned by setting the corresponding
positions in the mask matrix as 0 for this iteration, as indi-
cated in (1). In the subsequent training iterations, pruned pa-
rameters can be recovered according to their persistent update
as (9). This training-based pruning enables 1) parameter re-
covery to optimize final performance and 2) model adaptation
when applying the model on target data.

3.4 Algorithm and Implementation Details
Alg.1 illustrates the whole process of Co-Prune: Source and
target models are trained using their corresponding data and
current masks. Masks are updated accordingly with the up-
dates of model parameters by (3) and (5). In practice, Adam
[Kingma and Ba, 2014] with initial learning rate 10−3 is used
for Co-Prune and all retraining processes. Learning rate will
be divided by 10 when training loss increases for 3 consec-
utive epochs. Training to optimum is considered as learning
rate becomes smaller than 10−6.

4 Experiment
To simulate practical scenario, two datasets with abundant
source data and limited target data are utilized.

Algorithm 1 Co-Prune

Require: Source training data Ds = {Xs, Ys}ns , target
training data Dt = {Xt, Yt}nt , source pre-trained model
Ws

Ensure: Final target model Wt and mask Mt.
Initialize source model using Ws, target model as target
fine-tuned model based on Ws, source-specific mask Ms,
target-specific mask Mt with all 1s. α = α0

while α ≥ αmin do
while Not Optimum do

Train Ws using Ds and Ms, Wt using Dt and Mt

by (8) and (9).
Update mask Ms by (3).
Update mask Mt by (5).

end while
α is tuned by (7).

end while

CIFAR9-STL9 is a modified version of combined CIFAR10
and STL10 dataset. CIFAR10 is a classical 10-class dataset
with 50000 32 × 32-pixel training data. Inspired by this
dataset, STL10 is designed with 10 similar classes that con-
sists of very limited labeled samples: 5000 96 × 96-pixel
training data. We exclude one class from CIFAR10/STL10
that is not shared in both datasets and name the resulting data
as CIFAR9/STL9. After exclusion, we treat CIFAR9 as the
source domain and STL9 as the target domain.
ImageCLEF is a 4-domain image dataset. It extracts 600
images of 12 classes from ImageNet [Deng et al., 2009],
Caltech-256 [Griffin et al., 2007], PASCAL [Everingham
et al., 2010] and Bing, respectively. We regard ImageNet
dataset as the source domain. Specifically, an ImageNet pre-
trained model is downloaded online. Then the last layer is
replaced with a 12-output fully-connected layer in order to
be used for 12-class classification problem. We use the 600-
image ImageNet data to finetune the whole model, which
is utilized as the source pre-trained model. The rest three
datasets in ImageCLEF are regarded as target domains.

To verify Co-Prune’s generalization ability, we experi-
ment with CIFAR-Net [Jia et al., 2014] in CIFAR9-STL9,
ResNet18 [He et al., 2016] in ImageCLEF. For CIFAR-Net,
CR of each layer is set manually. For ResNet18, a unified CR
is set for every layer.

4.1 Comparison Experiment
We conduct comparison experiments using the following
baseline pruning methods: 1) LWC [Han et al., 2015], 2)
OBD [LeCun et al., 1990], 3) DNS [Guo et al., 2016], 4) L-
OBS [Dong et al., 2017]. LWC measured parameters’ impor-
tance using their absolute value. OBD used hessian and their
squared value to indicate the parameters importance. L-OBS
formulated pruning for each layer as an optimization prob-
lem, which is solved to attain parameters’ sensitivity. Given
a pre-trained model, these three methods performed one-time
pruning according to their measurement of weights’ impor-
tance. A retraining process is then conducted while fixing
the pruned weights. DNS performed pruning in a dynamic
way: after parameters updates, their importance will be re-

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2105

calculated by their corresponding absolute values, then pa-
rameters are pruned under certain probability related to the
importance. Since these methods are not designed specifi-
cally for cross-domain pruning, to make fair comparison, all
methods firstly retrain the target model based on provided
pre-trained model in the source domain as an initial state.
Then target data is utilized for the pruning process.

Besides, we use a classical domain adaptation algorithms
with modification for pruning as baselines from perspective
of domain adaptation: DDC [Tzeng et al., 2014]. DDC
trained source and target network with additional minimiza-
tion of Maximum Mean Discrepancy (MMD) distance of in-
termediate features. To revise DDC for pruning with super-
vised domain adaptation, we use DNS networks as target net-
work, with additional target label loss to assist training. We
name it as DDC-DNS.

Since data is quite limited in ImageCLEF, we divide each
domain into 80% for training and 20% for testing (with class
balance). Every experiment are conducted 10 times with ran-
dom data partition. For each partition, performance improve-
ment with variance of each method is recorded.

CR (%) Method FP Acc (%) Prune Acc (%)

10.4

LWC

68.03

66.26
OBD 65.78
DNS 66.25

L-OBS 66.01
DDC-DNS 66.49
Co-Prune 66.99

1.3

LWC 57.47
OBD 50.82
DNS 58.89

L-OBS 56.00
DDC-DNS 56.79
Co-Prune 60.5

One-Time Co-Prune 55.36
Distillation 53.16

0.9

LWC 49.53
OBD 48.34
DNS 53.32

L-OBS 53.04
DDC-DNS 47.86
Co-Prune 56.21

Table 1: Overall results of CIFAR9-STL9 using CIFAR-Net

We compare Co-Prune with LWC, OBD, DNS, L-OBS,
DDC-DNS in CIFAR9-STL9 using CIFAR-Net under differ-
ent CRs. Table.1 illustrates performance of the pruned model
under different methods: Co-Prune outperforms all baseline
methods in all selected CR. Especially, as CR decreases, Co-
Prune shows more obvious advantage over other methods.

To validate the effect of training-based pruning used in Co-
Prune, which differentiates from one-time pruning in that:
pruning strategy is changing during training. We conduct an
experiment of Co-Prune using one-time pruning (named as
“One-Time Co-Prune”) in Table.1, specially, mask is updated
only at the beginning of training. The performance drops
significantly from 60.5% to 55.36%. This demonstrates that
training-based pruning contributes to Co-Prune.

Comparison experiments with non-pruning compression is
conducted using distillation. We construct a slim CIFARNet
which contains 10.4% parameters of the original one. This

slim network is trained by ground-truth and distilled from
original target-retrained CIFARNet (who is retrained using
target data based on source pre-trained network). As Table.1
shows it reaches 53.16%, worse than Co-Prune.

Direction Method FP Acc (%) Improve Acc (%)

I→P

LWC

60.917±3.809

-16.167±3.617
OBD -28.333±7.188
DNS -11.417±3.556

L-OBS -8.317±3.435
DDC-DNS -12.917±4.075
Co-Prune -6.583±3.525

I→C

LWC

87.417±2.898

-6.833±3.851
OBD -30.500±14.664
DNS -5.583±2.912

L-OBS -5.018±3.214
DDC-DNS -6.167±3.009
Co-Prune -3.083±2.936

I→B

LWC

49.667±3.232

-11.667±2.609
OBD -18.250±2.661
DNS -7.667±2.577

L-OBS -8.973±4.735
DDC-DNS -6.500±5.711
Co-Prune -5.648±3.659

Table 2: Overall results of ImageNet→PASCAL,
ImageNet→Caltech256, ImageNet→Bing using ImageNet
pre-trained ResNet18. CR is 4% for each layer

Similarly, we conduct 3 cross-domain pruning from Ima-
geNet to PASCAL, Caltech256, Bing, respectively. In Ta-
ble.2, we compare the performances of different methods in
various target domains, using ResNet18 with 4% CR in each
layer. For all the cross-domain directions, Co-Prune shows
the best average performance over other methods.

4.2 Effect of Transfer Factor α
To examine α’s properties in Co-Prune, CIFAR9-STL9 in
CIFAR-Net under CR at 1.3 is used as an example.

Variation of Co-Prune. When α=0, Co-Prune reduces
to DNS as it only replies on target data to generate mask and
conduct training. For α= 1, Co-Prune depends on source
model to generate mask for target pruning. Total dependence
on source or target does harm in finding optimal pruning strat-
egy. As Table.3 shows, Co-Prune with adaptive α outper-
forms other variations, showing that proper knowledge trans-
fer from source assists in improving pruning on target model.

α FP Acc Prune Acc
0 (DNS)

68.03
58.89

0.7→0.5→0.3 60.5
1 57

Table 3: Co-Prune’s variation using different α. α = 0 reduces to
DNS, α = 1 means that mask generation replies on source model

Effect of Sensitivity β. (7) determines the sensitivity of
transfer factor. We experiments with various β by fixing
α0 = 0.7, αmin = 0.3 and record its best performance in
Fig.3(a): Performance of Co-Prune under various β shows
changes with mean and variance as 60.91±0.8%, whose

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2106

15 13 10 9 7 5 3 150.0
52.5
55.0
57.5
60.0
62.5
65.0
67.5
70.0

Performance with Varying β

(a)

0.9 0.7 0.66 0.63 0.6 0.5 0.350.0
52.5
55.0
57.5
60.0
62.5
65.0
67.5
70.0

Performance with Varying α0

(b)

0.7 0.5 0.4 0.36 0.33 0.3 0.150.0
52.5
55.0
57.5
60.0
62.5
65.0
67.5
70.0

Performance with Varying αmin

(c)

Figure 3: (a) Performance of Co-Prune under various β with fixed α0 = 0.7, αmin = 0.3; (b) Performance of Co-Prune under various α0

with fixed β = 3, αmin = 0.3; (c) Performance of Co-Prune under various αmin with fixed α0 = 0.7, β = 3. Y axis represents the best
performance under corresponding setting, X axis represents β, α0, αmin, respectively

average exceeds all baseline methods by a large margin.
This result shows that Co-Prune is consistent and stable with
different sensitivity when tuning α.

Effect of Initial α0. α0 is set as initial value for transfer-
ring knowledge. We examine the effect of this initial state
to final performance of Co-Prune. β = 3 and αmin = 0.3
are fixed and the best performance is reported in Fig.3(b).
Performance drops when α0 is too large (starting from
learning too much from source and intense tuning of α) or
too small (starting from learning too few from source). The
performance is rather stable when α0 ranges within [0.6, 0.7]
and shows better performance.

Effect of Minimum αmin. Co-Prune terminates after train-
ing reaches optimum using αmin Effect of this final state to
performance of Co-Prune is experimented with β = 3 and
α0 = 0.7 fixed. The best performance with various αmin is
reported in Fig.3(c). αmin = 0.7 gets the worst performance,
which is even lower than DNS. If αmin is getting too large,
it means there is almost no changes in α. When αmin is set
within [0.3, 0.4], Co-Prune shows the best performance.

4.3 Performance Under Various CRs

5 4 3
Compression Ratio (%)

−30

−25

−20

−15

−10

−5

P
er

fo
rm

an
ce

Im
pr

ov
em

en
t

(%
)

Co-Prune

LWC

OBD

DNS

L-OBS

DDC-DNS

Figure 4: Performance improvement as CR changes in I→ P

We further study how different methods perform in differ-
ent CRs. I→P from ImageCLEF using ResNet18 is utilized
as an example to verify the performances of different methods
from CR: 5%→ 4%→ 3%. Fig.3(c) illustrates the variation
of performance improvement under pruned methods. Among
all the methods, Co-Prune performs the best in all CRs.

4.4 Complexity Analysis
We set number of parameters as n, training iteration as T .
training-based pruning methods, such as Co-Prune, DNS,
their time complexity can be represented asO(t(n+nlogn)).
For one-time pruning methods (pruning strategy is deter-
mined at the begining), LWC: O(tn+nlogn), OBD: O(tn+
nlogn + n2), L-OBS: O(tn + nlogn +D2), where D is the
size of dataset used in hessian approximation.

5 Conclusion
In this paper, we propose a novel cross-domain pruning al-
gorithm (Co-Prune) for deep neural network. Traditionally,
pruning algorithms reply on a well-trained network and a
huge amount of training data, which is not realistic in many
domains. Co-Prune solves this problem by training-based
pruning, with the construction of target’s pruning mask that
incorporates knowledge from the source domain. An adap-
tive transfer factor that controls the knowledge flow from
the source domain for target pruning is introduced to further
boost the performance. Extensive experiments are conducted
on two benchmark datasets to demonstrate Co-Prune’s per-
formance over baseline methods.

Acknowledgements
This work is supported by NTU Singapore Nanyang Assistant
Professorship (NAP) grant M4081532.020.

References
[Bucilua et al., 2006] Cristian Bucilua, Rich Caruana, and

Alexandru Niculescu-Mizil. Model compression. In Pro-
ceedings of the 12th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages
535–541. ACM, 2006.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2107

[Deng et al., 2009] Jia Deng, Wei Dong, Richard Socher, Li-
Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. 2009.

[Dong et al., 2017] Xin Dong, Shangyu Chen, and Sinno
Pan. Learning to prune deep neural networks via layer-
wise optimal brain surgeon. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 4860–4874. Curran Associates,
Inc., 2017.

[Everingham et al., 2010] Mark Everingham, Luc Van Gool,
Christopher KI Williams, John Winn, and Andrew Zis-
serman. The pascal visual object classes (voc) challenge.
International journal of computer vision, 88(2):303–338,
2010.

[Ganin and Lempitsky, 2014] Yaroslav Ganin and Victor
Lempitsky. Unsupervised domain adaptation by backprop-
agation. arXiv preprint arXiv:1409.7495, 2014.

[Griffin et al., 2007] Gregory Griffin, Alex Holub, and Pietro
Perona. Caltech-256 object category dataset. 2007.

[Guo et al., 2016] Yiwen Guo, Anbang Yao, and Yurong
Chen. Dynamic network surgery for efficient dnns. In Ad-
vances In Neural Information Processing Systems, pages
1379–1387, 2016.

[Gupta et al., 2016] Saurabh Gupta, Judy Hoffman, and Ji-
tendra Malik. Cross modal distillation for supervision
transfer. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 2827–2836,
2016.

[Han et al., 2015] Song Han, Jeff Pool, John Tran, and
William Dally. Learning both weights and connections for
efficient neural network. In Advances in Neural Informa-
tion Processing Systems, pages 1135–1143, 2015.

[Hassibi and Stork, 1993] Babak Hassibi and David G Stork.
Second order derivatives for network pruning: Optimal
brain surgeon. In Advances in neural information process-
ing systems, pages 164–171, 1993.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[Hinton et al., 2015] Geoffrey Hinton, Oriol Vinyals, and
Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[Jia et al., 2014] Yangqing Jia, Evan Shelhamer, Jeff Don-
ahue, Sergey Karayev, Jonathan Long, Ross Girshick, Ser-
gio Guadarrama, and Trevor Darrell. Caffe: Convolutional
architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014.

[Kingma and Ba, 2014] Diederik P Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[Krizhevsky et al., 2012] Alex Krizhevsky, Ilya Sutskever,
and Geoffrey E Hinton. Imagenet classification with deep

convolutional neural networks. In Advances in neural in-
formation processing systems, pages 1097–1105, 2012.

[LeCun et al., 1990] Yann LeCun, John S. Denker, and
Sara A. Solla. Optimal brain damage. In D. S. Touret-
zky, editor, Advances in Neural Information Processing
Systems 2, pages 598–605. Morgan-Kaufmann, 1990.

[Pan and Yang, 2010] Sinno Jialin Pan and Qiang Yang. A
survey on transfer learning. IEEE Transactions on knowl-
edge and data engineering, 22(10):1345–1359, 2010.

[Pan et al., 2011] Sinno Jialin Pan, Ivor W Tsang, James T
Kwok, and Qiang Yang. Domain adaptation via transfer
component analysis. IEEE Transactions on Neural Net-
works, 22(2):199–210, 2011.

[Romero et al., 2014] Adriana Romero, Nicolas Ballas,
Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta,
and Yoshua Bengio. Fitnets: Hints for thin deep nets.
arXiv preprint arXiv:1412.6550, 2014.

[Simonyan and Zisserman, 2014] Karen Simonyan and An-
drew Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[Tzeng et al., 2014] Eric Tzeng, Judy Hoffman, Ning Zhang,
Kate Saenko, and Trevor Darrell. Deep domain confu-
sion: Maximizing for domain invariance. arXiv preprint
arXiv:1412.3474, 2014.

[Tzeng et al., 2017] Eric Tzeng, Judy Hoffman, Kate
Saenko, and Trevor Darrell. Adversarial discriminative
domain adaptation. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages
7167–7176, 2017.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2108

